论文标题

摄像机:掩盖伪装物体检测的可分离注意力

CamoFormer: Masked Separable Attention for Camouflaged Object Detection

论文作者

Yin, Bowen, Zhang, Xuying, Hou, Qibin, Sun, Bo-Yuan, Fan, Deng-Ping, Van Gool, Luc

论文摘要

如何从背景中识别和细分伪装对象是具有挑战性的。受到变压器多头自我注意的启发,我们提出了一个简单的可分离注意力(MSA),以供伪装对象检测。我们首先将多头自我注意力分为三个部分,这些部分负责使用不同的面具策略将伪装的物体与背景区分开。此外,我们建议根据提议的MSA的简单自上而下的解码器逐渐捕获高分辨率的语义表示,以获得精确的分割结果。这些结构加上骨干编码器形成了一种新型号,称为Camoformer。广泛的实验表明,在三种广泛使用的伪装对象检测基准上,摄影师超过了所有现有的最新方法。就S量和加权f量表而言,平均比以前的方法相对改善约为5%。

How to identify and segment camouflaged objects from the background is challenging. Inspired by the multi-head self-attention in Transformers, we present a simple masked separable attention (MSA) for camouflaged object detection. We first separate the multi-head self-attention into three parts, which are responsible for distinguishing the camouflaged objects from the background using different mask strategies. Furthermore, we propose to capture high-resolution semantic representations progressively based on a simple top-down decoder with the proposed MSA to attain precise segmentation results. These structures plus a backbone encoder form a new model, dubbed CamoFormer. Extensive experiments show that CamoFormer surpasses all existing state-of-the-art methods on three widely-used camouflaged object detection benchmarks. There are on average around 5% relative improvements over previous methods in terms of S-measure and weighted F-measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源