论文标题

部分可观测时空混沌系统的无模型预测

On optimal control in a nonlinear interface problem described by hemivariational inequalities

论文作者

Gwinner, Joachim

论文摘要

本文的目的是三倍。首先,我们在具有非单调设置值传输条件的无界域上攻击非线性界面问题。研究的问题涉及内部结构域中的非线性单调偏微分方程,外部结构域中的拉普拉斯式。这样的标量界面问题模拟了弹性无限培养基的非单身摩擦接触。界面问题的变异表述导致半传染性不平等(HVI),但是该界面不平等,但生存在无限的域上,因此无法在反射性的Banach空间设置中进行分析。通过边界积分方法,我们获得了另一种HVI,该HVI使用耦合边界上的分数顺序的标准SOBOLEV空间适合功能分析方法。其次,我们考虑了凸扩展的实价函数增强的扩展的实价HVI,我们考虑了扩展的实价HVI。在较小的假设下,我们提供存在和独特性结果,还建立了相对于扩展的实现函数作为参数的稳定性结果。第三基于后者的稳定性结果,我们证明了四种最佳控制问题的最佳控制存在:对界面域,边界控制,同时由界面问题控制的分布式结合控制,以及由相关双边障碍物界面问题驱动的障碍物的分布。

The purpose of this paper is three-fold. Firstly we attack a nonlinear interface problem on an unbounded domain with nonmonotone set-valued transmission conditions. The investigated problem involves a nonlinear monotone partial differential equation in the interior domain and the Laplacian in the exterior domain. Such a scalar interface problem models nonmonotone frictional contact of elastic infinite media. The variational formulation of the interface problem leads to a hemivariational inequality (HVI), which however lives on the unbounded domain, and thus cannot analyzed in a reflexive Banach space setting. By boundary integral methods we obtain another HVI that is amenable to functional analytic methods using standard Sobolev spaces on the interior domain and Sobolev spaces of fractional order on the coupling boundary. Secondly broadening the scope of the paper, we consider extended real-valued HVIs augmented by convex extended real-valued functions. Under a smallness hypothesis, we provide existence and uniqueness results, also establish a stability result with respect to the extended real-valued function as parameter. Thirdly based on the latter stability result, we prove the existence of optimal controls for four kinds of optimal control problems: distributed control on the bounded domain, boundary control, simultaneous distributed-boundary control governed by the interface problem, as well as control of the obstacle driven by a related bilateral obstacle interface problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源