论文标题
在恒星图上的非线性schrödinger方程的阈值以下的全局动力学和排斥的迪拉克三角洲边界
Global dynamics below a threshold for the nonlinear Schrödinger equations with the Kirchhoff boundary and the repulsive Dirac delta boundary on a star graph
论文作者
论文摘要
我们考虑了带有Kirchhoff边界的星形图上的非线性Schrödinger方程,以及原点的排斥性Dirac Delta边界。在本文中,我们显示了实际线上基态的质量能量下方的散射爆破二分法结果。散射部分的证明是基于浓度的紧凑性和刚性论点。我们的主要贡献是通过使用对称分解在星形图上进行线性曲线分解。
We consider the nonlinear Schrödinger equations on the star graph with the Kirchhoff boundary and the repulsive Dirac delta boundary at the origin. In the present paper, we show the scattering-blowup dichotomy result below the mass-energy of the ground state on the real line. The proof of the scattering part is based on a concentration compactness and rigidity argument. Our main contribution is to give a linear profile decomposition on the star graph by using a symmetrical decomposition.