论文标题
关于符号圆的动作,扭转和循环的评论
Remarks on symplectic circle actions, torsion and loops
论文作者
论文摘要
我们研究了封闭符号歧管的符号差异性的循环。我们的主要结果对大量的符号歧管有效,表明,每当其轨道易于收缩时,符号循环的通量就会消失。结果,我们为通量组和新实例获得了一个新的消失结果,在这种情况下,同时圆圈动作的固定点的存在是足够的条件,使其成为哈密顿量。我们还获得了符号扭转的应用程序,更精确地是$ \ mathrm {symp} _ {0}(m,ω)$的$ \ mathrm {symp} _ {symp}的非平凡元素。
We study loops of symplectic diffeomorphisms of closed symplectic manifolds. Our main result, which is valid for a large class of symplectic manifolds, shows that the flux of a symplectic loop vanishes whenever its orbits are contractible. As a consequence, we obtain a new vanishing result for the flux group and new instances where the presence of a fixed point of a symplectic circle action is a sufficient condition for it to be Hamiltonian. We also obtain applications to symplectic torsion, more precisely, non-trivial elements of $\mathrm{Symp}_{0}(M,ω)$ that have finite order.