论文标题
基于新的不连续的盖尔金方法基于数值相对论计划NMESH
The new discontinuous Galerkin methods based numerical relativity program Nmesh
论文作者
论文摘要
解释引力波观测并了解天体物理紧凑物体(例如黑洞或中子星)的物理学需要准确的理论模型。在这里,我们提出了一个名为NMESH的新数值相对论计算机程序,该程序的设计目标是成为下一代计划,以模拟具有挑战性的相对论天体物理问题,例如二进制黑洞或中子星星合并。为了有效地在大型超级计算机上运行,NMESH使用不连续的Galerkin方法以及域的分解和网状细化,并平行于和缩放。在这项工作中,我们讨论了我们使用的各种数值方法。我们还提出了测试问题的结果,例如标量波的演变,单个黑洞和中子星以及冲击管。此外,我们引入了一个新的阳性限制器,使我们能够稳定地发展单个中子星,而无需额外的人造气氛或其他更传统的限制器。
Interpreting gravitational wave observations and understanding the physics of astrophysical compact objects such as black holes or neutron stars requires accurate theoretical models. Here, we present a new numerical relativity computer program, called Nmesh, that has the design goal to become a next generation program for the simulation of challenging relativistic astrophysics problems such as binary black hole or neutron star mergers. In order to efficiently run on large supercomputers, Nmesh uses a discontinuous Galerkin method together with a domain decomposition and mesh refinement that parallelizes and scales well. In this work, we discuss the various numerical methods we use. We also present results of test problems such as the evolution of scalar waves, single black holes and neutron stars, as well as shock tubes. In addition, we introduce a new positivity limiter that allows us to stably evolve single neutron stars without an additional artificial atmosphere, or other more traditional limiters.