论文标题

共价底物上外延生长的Moiré模式形成:INSB上的SB(111)A

Moiré pattern formation in epitaxial growth on a covalent substrate: Sb on InSb(111)A

论文作者

Liu, Bing, Wagner, Tim, Enzner, Stefan, Eck, Philipp, Kamp, Martin, Sangiovanni, Giorgio, Claessen, Ralph

论文摘要

由两个相互竞争的晶格引起的结构莫伊尔上层建筑可能导致意外的电子行为,例如超导性或莫特内斯。大多数研究的Moiré异质结构基于Van der Waals(VDW)材料,因为强界面相互作用通常会导致形成紧张的膜或常规的表面重建。在这里,我们成功地合成了超薄SB膜,这些膜预测在半胰岛INSB(111)a上显示厚度依赖性拓扑特性。尽管底物表面具有共价性质,但我们通过扫描透射电子显微镜(STEM)证明,SB原子的第一层已经完全未经培养,而方位型则对齐。当我们通过扫描隧道显微镜(STM)的地形来证明,而不是通过结构修饰来补偿晶格不匹配的-6.4%,而是形成了明显的Moiré模式,直到几个双层的膜厚度。我们的模型计算基于密度功能理论(DFT)将Moiré模式分配给周期性表面波纹。与DFT预测一致,无论Moiré调制如何,在厚SB膜上已知的拓扑表面状态被实验确认可以持续到较低的膜厚度,而DIRAC点随着SB厚度的降低而朝着较低的结合能转移。

Structural moiré superstructures arising from two competing lattices may lead to unexpected electronic behavior, such as superconductivity or Mottness. Most investigated moiré heterostructures are based on van der Waals (vdW) materials, as strong interface interactions typically lead to the formation of strained films or regular surface reconstructions. Here we successfully synthesize ultrathin Sb films, that are predicted to show thickness-dependent topological properties, on semi-insulating InSb(111)A. Despite the covalent nature of the substrate surface, we prove by scanning transmission electron microscopy (STEM) that already the first layer of Sb atoms grows completely unstrained, while azimuthally aligned. Rather than compensating the lattice mismatch of -6.4% by structural modifications, the Sb films form a pronounced moiré pattern as we evidence by scanning tunneling microscopy (STM) topography up to film thicknesses of several bilayers. Our model calculations based on density functional theory (DFT) assign the moiré pattern to a periodic surface corrugation. In agreement with DFT predictions, irrespective of the moiré modulation, the topological surface state known on thick Sb film is experimentally confirmed to persist down to low film thicknesses, and the Dirac point shifts towards lower binding energies with decreasing Sb thickness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源