论文标题

复杂重量的复杂网络

Complex networks with complex weights

论文作者

Böttcher, Lucas, Porter, Mason A.

论文摘要

在许多研究中,通常使用二进制(即未加权)边缘来检查相邻或不相邻的实体网络。研究人员已经概括了这种二进制网络以结合边缘的权重,这使一个人可以编码节点 - 与异质强度或频率(例如,在运输网络,供应链和社交网络中)的相互作用。大多数此类研究都考虑了实用值的权重,尽管事实上,具有复杂权重的网络在量子信息,量子化学,电动力学,流变学和机器学习等田野中产生。经典系统研究中的许多标准网络科学方法都依赖于边缘权重的真实性性质,因此,如果人们试图使用它们来分析具有复杂边缘权重的网络,则有必要将其推广。在本文中,我们研究了标准网络分析方法如何无法捕获具有复杂边缘权重的网络的结构特征。然后,我们将几个网络度量概括为复杂的域,并表明随机步行中心提供了一种有用的方法来检查具有复杂权重的网络中的节点重要性。

In many studies, it is common to use binary (i.e., unweighted) edges to examine networks of entities that are either adjacent or not adjacent. Researchers have generalized such binary networks to incorporate edge weights, which allow one to encode node--node interactions with heterogeneous intensities or frequencies (e.g., in transportation networks, supply chains, and social networks). Most such studies have considered real-valued weights, despite the fact that networks with complex weights arise in fields as diverse as quantum information, quantum chemistry, electrodynamics, rheology, and machine learning. Many of the standard network-science approaches in the study of classical systems rely on the real-valued nature of edge weights, so it is necessary to generalize them if one seeks to use them to analyze networks with complex edge weights. In this paper, we examine how standard network-analysis methods fail to capture structural features of networks with complex edge weights. We then generalize several network measures to the complex domain and show that random-walk centralities provide a useful approach to examine node importances in networks with complex weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源