论文标题
道路:学习一个隐性递归octree自动描述器,以有效编码3D形状
ROAD: Learning an Implicit Recursive Octree Auto-Decoder to Efficiently Encode 3D Shapes
论文作者
论文摘要
3D形状的紧凑而准确的表示对于许多感知和机器人任务都是核心。最先进的学习方法可以重建单个对象,但扩展到大型数据集。我们提出了一种新颖的递归隐式表示,以有效,准确地编码复杂3D形状的大数据集,通过递归遍历潜在空间中的隐式ocrete。我们隐式递归OCTREE自动码编码器(ROAD)学习了一个层次结构化的潜在空间,从而使最新的重建结果以99%以上的压缩比实现了最新的重建结果。我们还提出了一种有效的课程学习方案,该方案自然利用了基础OCTREE空间表示的粗到精细特性。我们探讨了与潜在空间维度,数据集大小和重建精度相关的缩放定律,这表明增加潜在空间维度足以扩展到大型数据集。最后,我们表明我们学到的潜在空间编码了一个粗到细的层次结构,可在不同级别的细节上产生可重复使用的潜伏期,并且我们为训练集以外的新形状提供了定性的概括。
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.