论文标题
多键超导量子计算机的体系结构
Architectures for Multinode Superconducting Quantum Computers
论文作者
论文摘要
许多提议缩放量子技术的建议依赖于模块化或分布式设计,在这些设计中,将单个量子处理器(称为节点)链接在一起以形成一台大型多端量子计算机(MNQC)。构建MNQC的一种可扩展方法是使用具有光学互连的超导量子系统。但是,这些机器的限制因素将是节点门,这可能比本地操作噪音较高,较慢。克服节点门的局限性将需要一系列技术,包括纠缠产生的改进,纠缠蒸馏的使用以及优化的软件和编译器,并且尚不清楚这些组件的改进如何相互作用以影响整体系统性能,每种效果的性能是什么,甚至是如何量化每个绩效的性能。在本文中,我们采用了一种“共同设计”启发的方法来量化节点链接,纠缠蒸馏和本地体系结构的硬件模型的整体MNQC性能。对于具有微波到光学链接的超导MNQC,我们发现了纠缠产生与蒸馏之间的权衡,这有可能使性能降低。我们展示了如何浏览这一权衡,列出编译器应如何在本地和节点门之间进行优化,并讨论何时嘈杂的量子链接比纯粹的经典链接具有优势。使用这些结果,我们引入了一个路线图,以实现早期MNQC,该路线图说明了对MNQC的硬件和软件的潜在改进,并概述了评估景观的标准,从纠缠产生和量子记忆的进展到专用算法,例如分布式量子相估计等专用算法。尽管我们专注于具有光学互连的超导设备,但我们的方法是MNQC实现的一般方法。
Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design' inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.