论文标题

使用重新分析数据对热带气旋的预测形成

Forecasting formation of a Tropical Cyclone Using Reanalysis Data

论文作者

Kumar, Sandeep, Biswas, Koushik, Pandey, Ashish Kumar

论文摘要

热带旋风形成过程是最复杂的自然现象之一,该现象由随时间和空间变化的各种大气,海洋和地理因素所控制。尽管进行了数年的研究,但准确地预测热带气旋的形成仍然是一项具有挑战性的任务。尽管现有的数值模型具有固有的局限性,但机器学习模型未能捕获TC形成背后因果因素的空间和时间维度。在这项研究中,已经提出了一个深度学习模型,该模型可以预测以高度准确性的交付时间长达60小时的热带气旋形成。该模型使用高分辨率重新分析数据ERA5(ECMWF再分析第五代),以及最佳的轨道数据IBTRACS(国际最佳气候气候管理轨道档案档案)来预测世界六个海洋盆地的热带旋风形成。在60小时内,该模型在六个海盆中达到86.9%-92.9%的准确性。该模型需要大约5-15分钟的训练时间,具体取决于海盆,并且可以在几秒钟内使用并可以预测的数据量,从而使其适用于现实生活中的使用情况。

The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源