论文标题

人类时机的现实建模,以实现可穿戴的认知援助

Realistic Modeling of Human Timings for Wearable Cognitive Assistance

论文作者

Muñoz, Manuel O. J. Olguín, Moothedath, Vishnu N., Champati, Jaya Prakash, Klatzky, Roberta, Satyanarayanan, Mahadev, Gross, James

论文摘要

可穿戴的认知援助(WCA)应用对基准的挑战和由于其人性化的性质而构成了挑战。考虑到问题的范围以及在受控实验中检测小但重要效果所需的观察次数,使用用户测试来优化系统参数通常是不可行的。考虑到未来WCA应用程序的预期质量大规模部署,需要工具实现人类独立的基准测试。 我们在本文中介绍了WCA中人类的完整端到端仿真的第一个模型。我们通过对以前在该领域的工作中收集的数据进行统计分析来构建此模型,并通过研究应用程序任务持续时间来证明其实用性。与一阶近似值相比,我们的模型在高系统损伤与低的阶跃执行时间之间显示出约36%的差距。我们进一步介绍了一个新颖的框架,用于在WCA中对资源消耗 - 反应性折衷进行随机优化,并表明,通过将该框架与我们的现实人类行为模型相结合,可以在数量处理的框架样本中大幅减少50%,而在能源消耗中可以实现20%的能源消耗。

Wearable Cognitive Assistance (WCA) applications present a challenge to benchmark and characterize due to their human-in-the-loop nature. Employing user testing to optimize system parameters is generally not feasible, given the scope of the problem and the number of observations needed to detect small but important effects in controlled experiments. Considering the intended mass-scale deployment of WCA applications in the future, there exists a need for tools enabling human-independent benchmarking. We present in this paper the first model for the complete end-to-end emulation of humans in WCA. We build this model through statistical analysis of data collected from previous work in this field, and demonstrate its utility by studying application task durations. Compared to first-order approximations, our model shows a ~36% larger gap between step execution times at high system impairment versus low. We further introduce a novel framework for stochastic optimization of resource consumption-responsiveness tradeoffs in WCA, and show that by combining this framework with our realistic model of human behavior, significant reductions of up to 50% in number processed frame samples and 20% in energy consumption can be achieved with respect to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源