论文标题

$ s^1 $ - 置化伪时代,升降到$ s^1 $ - 模量空间的局限化,并应用于$ s^1 $ equivariant符号共同体的应用

$S^1$-localisation by pseudocycles, lifts to $S^1$-localisation of moduli spaces, and application to invariants of $S^1$-equivariant symplectic cohomology

论文作者

Wilkins, Nicholas

论文摘要

我们演示了一种将$ S^1 $ - 局部化的方法应用于塑形曲线的模量空间。我们首先证明了atyiah-bott $ s^1 $ localitation的重新诠释,称为{\ it pseudocycles}(lbp),用于平滑的半级别$ s^1 $ - 歧管上的光滑。我们证明,对于通过歧管的某些层次层的某些模态曲线的模数空间,我们可以``提升'''''升起从参数空间到模量空间的LBP程序。

We demonstrate a way to apply $S^1$-localisation to moduli spaces of holomorphic curves. We first prove a reinterpretation of Atyiah-Bott $S^1$-localisation, called {\it localisation by pseudocycles} (LbP), for a smooth semifree $S^1$-action on a manifold. We demonstrate that, for certain moduli spaces of holomorphic curves parametrised by some stratum of the homotopy quotient of a manifold, we may ``lift" the LbP procedure from the parameter space to the moduli space. As an application we deduce relations between equivariant symplectic classes and Gromov-Witten invariants, thus proving a conjecture of Seidel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源