论文标题

一种机器学习方法来支持内幕交易检测中的决策

A machine learning approach to support decision in insider trading detection

论文作者

Mazzarisi, Piero, Ravagnani, Adele, Deriu, Paola, Lillo, Fabrizio, Medda, Francesca, Russo, Antonio

论文摘要

从投资者的交易活动数据中确定市场滥用活动,对于数据量和低信号与噪声比率都非常具有挑战性。在这里,我们提出了两种互补的无监督的机器学习方法,以支持旨在确定潜在内部交易活动的市场监视。第一个使用聚类来识别价格敏感事件的附近,例如收购竞标,是投资者在自己过去的交易历史以及同伴的当前交易活动方面的交易活动中的不连续性。第二种无监督的方法旨在确定(小的)投资者群体,这些投资者围绕价格敏感事件行事,指出潜在的内部戒指,即在价格敏感事件之前的一段时间内,一组同步的交易者在奖励方面表现出强大的方向交易。作为一个案例研究,我们将方法应用于投资者解决意大利股票的数据围绕收购投标的数据。

Identifying market abuse activity from data on investors' trading activity is very challenging both for the data volume and for the low signal to noise ratio. Here we propose two complementary unsupervised machine learning methods to support market surveillance aimed at identifying potential insider trading activities. The first one uses clustering to identify, in the vicinity of a price sensitive event such as a takeover bid, discontinuities in the trading activity of an investor with respect to his/her own past trading history and on the present trading activity of his/her peers. The second unsupervised approach aims at identifying (small) groups of investors that act coherently around price sensitive events, pointing to potential insider rings, i.e. a group of synchronised traders displaying strong directional trading in rewarding position in a period before the price sensitive event. As a case study, we apply our methods to investor resolved data of Italian stocks around takeover bids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源