论文标题

衡量预测性能的驱动力:应用信用评分

Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring

论文作者

Sullivan, Hué, Christophe, Hurlin, Christophe, Pérignon, Sébastien, Saurin

论文摘要

由于他们在确定获得信用的访问越来越重要时,信用评分模型正在受到银行主管和内部模型验证者的越来越多的审查。这些当局需要监视模型性能并确定其主要驱动力。为了促进这一点,我们介绍了XPER方法,以将性能指标(例如AUC,$ r^2 $)分解为与预测模型的各种特征相关的特定贡献。理论上XPER基于Shapley值,既是模型不合时式,又是性能度量标准。此外,它可以在模型级别或单个级别上实现。使用新颖的汽车贷款数据集,我们分解了一种机器学习模型的AUC,该模型训练以预测贷款申请人的默认概率。我们表明,少数功能可以解释模型性能的大部分。值得注意的是,对模型的预测性能做出最大贡献的功能可能不是对单个预测(SHAP)贡献最大的功能。最后,我们展示了如何使用XPER来处理异质性问题并提高性能。

As they play an increasingly important role in determining access to credit, credit scoring models are under growing scrutiny from banking supervisors and internal model validators. These authorities need to monitor the model performance and identify its key drivers. To facilitate this, we introduce the XPER methodology to decompose a performance metric (e.g., AUC, $R^2$) into specific contributions associated with the various features of a forecasting model. XPER is theoretically grounded on Shapley values and is both model-agnostic and performance metric-agnostic. Furthermore, it can be implemented either at the model level or at the individual level. Using a novel dataset of car loans, we decompose the AUC of a machine-learning model trained to forecast the default probability of loan applicants. We show that a small number of features can explain a surprisingly large part of the model performance. Notably, the features that contribute the most to the predictive performance of the model may not be the ones that contribute the most to individual forecasts (SHAP). Finally, we show how XPER can be used to deal with heterogeneity issues and improve performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源