论文标题

差分编码和指数增长

Differential codimensions and exponential growth

论文作者

Rizzo, Carla

论文摘要

让$ a $为有限的维数代数,在特征零的字段中具有派生,即,一个代数,其结构的结构被派生的lie代数$ l $的作用所丰富,而Let $ c_n^l(a),$ $ $ n \ n \ geq 1,$ n \ geq 1,$是其差异化的编码序列。这样的序列是指数界的,$ \ exp^l(a)= \ lim_ {n \ to \ infty} \ sqrt [n] {c_n^l(a)} $是一个可以计算的整数,称为$ a $ a $ a $的差异pi-expents。 在本文中,我们证明,对于任何lie代数$ l $,$ \ exp^l(a)$与$ \ exp(a)$,$ a $的普通pi exponent重合。此外,如果$ l $是可解决的谎言代数,我们将这种结果应用于几乎多项式增长的$ l $代数,即指数级增长的品种,以使任何适当的亚体变量都具有多种物质的增长。

Let $A$ be a finite dimensional associative algebra with derivations over a field of characteristic zero, i.e., an algebra whose structure is enriched by the action of a Lie algebra $L$ by derivations, and let $c_n^L(A),$ $n\geq 1,$ be its differential codimension sequence. Such sequence is exponentially bounded and $\exp^L(A) = \lim_{n\to \infty}\sqrt[n]{c_n^L(A)}$ is an integer that can be computed, called differential PI-exponent of $A$. In this paper we prove that for any Lie algebra $L$, $\exp^L(A)$ coincides with $\exp(A)$, the ordinary PI-exponent of $A$. Furthermore, in case $L$ is a solvable Lie algebra, we apply such result to classify varieties of $L$-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety has polynomial growth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源