论文标题

部分可观测时空混沌系统的无模型预测

Diffusion without Spreading of a Wave Packet in Nonlinear Random Models

论文作者

Aubry, Serge J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We discuss the long time behaviour of a finite energy wave packet in nonlinear Hamiltonians on infinite lattices at arbitrary dimension, exhibiting linear Anderson localization. Strong arguments both mathematical and numerical, suggest for infinite models that small amplitude wave packets may generate stationary quasiperiodic solutions (KAM tori) almost undistinguishable from linear wave packets. The probability of this event is non vanishing at small enough amplitude and goes to unity at amplitude zero. Most other wave packets (non KAM tori) are chaotic. We discuss the Arnold diffusion conjecture (recently partially proven) and propose a modified Boltzmann statistics for wave packets valid in generic models. The consequence is that the probability that a chaotic wave packet spreads to zero amplitude is zero. It must always remain focused around one or few chaotic spots which moves randomly over the whole system and generates subdiffusion.We study a class of Ding Dong models also generating subdiffusion where the nonlinearities are replaced by hard core potentials. Then we prove rigorously that spreading is impossible for any initial wave packet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源