论文标题

特征校准网络,用于遮挡的行人检测

Feature Calibration Network for Occluded Pedestrian Detection

论文作者

Zhang, Tianliang, Ye, Qixiang, Zhang, Baochang, Liu, Jianzhuang, Zhang, Xiaopeng, Tian, Qi

论文摘要

野外的行人发现仍然是一个具有挑战性的问题,尤其是对于包含严重阻塞的场景。在本文中,我们在深度学习框架中提出了一种新颖的特征学习方法,称为特征校准网络(FC-NET),以适应各种遮挡的行人。 FC-NET基于这样的观察,即行人的可见部分具有选择性和决定性的检测,并且被实现为具有自动激活(SA)模块和特征校准(FC)模块的自定进度特征学习框架。 FC-NET以一种新的自激活方式学习了突出可见部分并抑制行人塞部分的功能。 SA模块通过重复使用分类器的权重(不涉及任何其他参数)来估计行人激活图,因此导致了极其简约的模型,以增强特征的语义,而FC模块在Pixel-Wise和基于区域的方式中校准了自适应行人的卷积特征。关于城市服务员和加州理工学院数据集的实验表明,FC-NET改善了闭塞行人的检测性能高达10%,同时在非封闭式实例上保持出色的性能。

Pedestrian detection in the wild remains a challenging problem especially for scenes containing serious occlusion. In this paper, we propose a novel feature learning method in the deep learning framework, referred to as Feature Calibration Network (FC-Net), to adaptively detect pedestrians under various occlusions. FC-Net is based on the observation that the visible parts of pedestrians are selective and decisive for detection, and is implemented as a self-paced feature learning framework with a self-activation (SA) module and a feature calibration (FC) module. In a new self-activated manner, FC-Net learns features which highlight the visible parts and suppress the occluded parts of pedestrians. The SA module estimates pedestrian activation maps by reusing classifier weights, without any additional parameter involved, therefore resulting in an extremely parsimony model to reinforce the semantics of features, while the FC module calibrates the convolutional features for adaptive pedestrian representation in both pixel-wise and region-based ways. Experiments on CityPersons and Caltech datasets demonstrate that FC-Net improves detection performance on occluded pedestrians up to 10% while maintaining excellent performance on non-occluded instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源