论文标题
$ \ Mathbb z $ - $ q $ -manifolds的普通形式
Normal forms of $\mathbb Z$-graded $Q$-manifolds
论文作者
论文摘要
根据A.K.的最新结果和V.S.在$ \ Mathbb z $分类的歧管上,我们在其中提供了几种本地和全局正常形式的结果,以$ q $结构为基础,即用于差分级别的歧管。特别是,我们解释了它们的相关结构集中在其曲率的零位,尤其是当负部分是koszul-tate类型时。我们还提供本地分裂定理。
Following recent results of A.K. and V.S. on $\mathbb Z$-graded manifolds, we give several local and global normal forms results for $Q$-structures on those, i.e. for differential graded manifolds. In particular, we explain in which sense their relevant structures are concentrated along the zero-locus of their curvatures, especially when the negative part is of Koszul--Tate type. We also give a local splitting theorem.