论文标题
高斯繁殖用于编码量子的传播光
Gaussian breeding for encoding a qubit in propagating light
论文作者
论文摘要
实用的量子计算需要对物理系统中逻辑Qubit的鲁棒编码,以保护脆弱的量子信息。当前,缺乏可扩展性限制了大多数物理系统中的逻辑编码,因此,传播光的高可扩展性可能是实现实用量子计算机的游戏规则改变者。但是,传播光也有一个缺点:由于非线性弱而引起的逻辑编码的难度。在这里,我们建议在传播光中编码任意的Gottesman-Kitaev-Preskill(GKP)量子的高斯繁殖。关键思想是光子探测器的量子叠加有效且具有疑问,这是量子传播光中使用最广泛的非线性元素。这种表述使得可以系统地创建所需的Qubits,并以最少的资源创建所需的Qubit。我们的模拟表明,在易于故障的阈值(包括``魔术状态''')上方的GKP量子量可以以很高的成功概率生成,并且高保真度超过0.99。该结果填充了实用量子计算的重要缺失部分。
Practical quantum computing requires robust encoding of logical qubits in physical systems to protect fragile quantum information. Currently, the lack of scalability limits the logical encoding in most physical systems, and thus the high scalability of propagating light can be a game changer for realizing a practical quantum computer. However, propagating light also has a drawback: the difficulty of logical encoding due to weak nonlinearity. Here, we propose Gaussian breeding that encodes arbitrary Gottesman-Kitaev-Preskill (GKP) qubits in propagating light. The key idea is the efficient and iterable generation of quantum superpositions by photon detectors, which is the most widely used nonlinear element in quantum propagating light. This formulation makes it possible to systematically create the desired qubits with minimal resources. Our simulations show that GKP qubits above a fault-tolerant threshold, including ``magic states'', can be generated with a high success probability and with a high fidelity exceeding 0.99. This result fills an important missing piece toward practical quantum computing.