论文标题

冷原子 - 分子碰撞中的核自旋松弛

Nuclear spin relaxation in cold atom-molecule collisions

论文作者

Hermsmeier, Rebekah, Xing, Xiaodong, Tscherbul, Timur V.

论文摘要

我们在$^1σ^+$分子的冷碰撞中探索核自旋松弛的量子动力学,外部磁场中无结构原子。为此,我们开发了一种严格的耦合通道方法,该方法解释了$^1σ^+$分子的旋转和核自旋度,它们与外部磁场的相互作用以及各向异性原子 - 原子分子相互作用。我们应用方法来研究$^{13} $ co分子的核旋转分子的碰撞放松,沉浸在$^4 $ He原子的冷缓冲气体中。我们发现,CO的地面旋转歧管中的核自旋松弛由于在核自旋阶段之间没有直接耦合而发生的慢慢发生。 $ n = 1 $ n = 1 $核自旋状态之间的碰撞过渡速率通常要高得多,这是由于两国之间的直接核自旋旋转耦合。这些转变遵守选择规则,这些规则取决于初始和最终分子状态的旋转和核旋转角动量的空间固定投影的值。对于某些初始状态,我们还观察到强烈的磁场依赖性,可以使用第一个诞生的近似值来理解。我们使用计算出的核自旋松弛率来研究浸入HE的冷缓冲气体中的Co $(n = 0)$的单个核自旋状态的热化。计算出的核自旋松弛时间($ t_1 \ simeq 0.5 $ s $ t = 1 $ k)显示,由于旋转激发态的增加,在升高温度下,温度依赖性迅速降低,在旋转激发态的增加中,在更快的速度下经历了核自旋松弛。因此,在与缓冲气体原子冷碰撞中的$ n = 0 $的长放松时间只能保持在足够低的温度下($ kt \ ll 2b_e $),其中$ b_e $是旋转常数。

We explore the quantum dynamics of nuclear spin relaxation in cold collisions of $^1Σ^+$ molecules with structureless atoms in an external magnetic field. To this end, we develop a rigorous coupled-channel methodology, which accounts for rotational and nuclear spin degrees of freedom of $^1Σ^+$ molecules, their interaction with an external magnetic field, as well as for anisotropic atom-molecule interactions. We apply the methodology to study collisional relaxation of the nuclear spin sublevels of $^{13}$CO molecules immersed in a cold buffer gas of $^4$He atoms. We find that nuclear spin relaxation in the ground rotational manifold of CO occurs extremely slowly due to the absence of direct couplings between the nuclear spin sublevels. The rates of collisional transitions between the $N=1$ nuclear spin states of CO are generally much higher due to the direct nuclear spin-rotation coupling between the states. These transitions obey selection rules, which depend on the values of space-fixed projections of rotational and nuclear spin angular momenta for the initial and final molecular states. For some initial states, we also observe a strong magnetic field dependence, which can be understood using the first Born approximation. We use our calculated nuclear spin relaxation rates to investigate the thermalization of a single nuclear spin state of CO$(N=0)$ immersed in a cold buffer gas of He. The calculated nuclear spin relaxation times ($T_1\simeq 0.5$ s at $T=1$ K) display a steep temperature dependence decreasing rapidly at elevated temperatures due to the increased population of rotationally excited states, which undergo nuclear spin relaxation at a much faster rate. Thus, long relaxation times of $N=0$ nuclear spin states in cold collisions with buffer gas atoms can only be maintained at sufficiently low temperatures ($kT\ll 2B_e$), where $B_e$ is the rotational constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源