论文标题
基准数据集和现实世界视频超级分辨率的有效框架相位
Benchmark Dataset and Effective Inter-Frame Alignment for Real-World Video Super-Resolution
论文作者
论文摘要
旨在从其低分辨率(LR)对应物重建高分辨率(HR)视频的视频超分辨率(VSR)近年来取得了巨大进展。但是,将现有的VSR方法部署到具有复杂降解的现实世界数据中仍然是具有挑战性的。一方面,很少有一致的现实世界VSR数据集,尤其是具有较大的超分辨率量表因子,这限制了现实世界VSR任务的发展。另一方面,现有VSR方法中的对齐算法在现实世界的视频中的表现较差,从而导致结果不令人满意。为了解决上述问题,我们构建了一个现实世界中的4 VSR数据集,即MVSR4 $ \ times $,其中低分辨率和高分辨率视频分别用智能手机的不同焦距长度镜头捕获。此外,我们提出了一种有效的现实VSR对齐方式,即EAVSR。 EAVSR采用了建议的多层自适应空间变换网络(MultiAdastn),以优化预先训练的光流估计网络提供的偏移。 REALVSR和MVSR4 $ \ times $数据集的实验结果显示了我们方法的有效性和实用性,并且我们在现实世界中实现了最新的VSR任务。数据集和代码将公开可用。
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years. However, it remains challenging to deploy existing VSR methods to real-world data with complex degradations. On the one hand, there are few well-aligned real-world VSR datasets, especially with large super-resolution scale factors, which limits the development of real-world VSR tasks. On the other hand, alignment algorithms in existing VSR methods perform poorly for real-world videos, leading to unsatisfactory results. As an attempt to address the aforementioned issues, we build a real-world 4 VSR dataset, namely MVSR4$\times$, where low- and high-resolution videos are captured with different focal length lenses of a smartphone, respectively. Moreover, we propose an effective alignment method for real-world VSR, namely EAVSR. EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network. Experimental results on RealVSR and MVSR4$\times$ datasets show the effectiveness and practicality of our method, and we achieve state-of-the-art performance in real-world VSR task. The dataset and code will be publicly available.