论文标题
智能可持续建筑中基于活动的需求响应建议
Activity-Based Recommendations for Demand Response in Smart Sustainable Buildings
论文作者
论文摘要
私人家庭的能源消耗约占全球总能源消耗的30%,从而通过能源生产造成了二氧化碳排放量的很大一部分。通过负载转移的智能需求响应可以通过推动居民改变其能源消耗行为来提高住宅建筑物的能源效率。本文介绍了基于活动预测的框架,用于基于公用事业的上下文感知多代理推荐系统,该系统生成了24小时时间范围的活动变化时间表,以专注于CO2排放或节省能源成本。特别是,我们设计并实施了使用小时的能源消耗数据的活动代理。它不需要进一步的感官数据或活动标签,以降低实施成本和对广泛的用户输入的需求。此外,该系统通过节省二氧化碳排放来增强实用程序选择,以节省能源成本,并提供了专注于两个维度的可能性。经验结果表明,尽管将重点放在二氧化碳排放量节省的同时,该系统平均可节省排放的12%和节省成本的7%。当专注于节省能源成本时,在接受所有建议的情况下,研究家庭可以节省20%的能源成本和6%的排放。推荐活动时间表,该系统使用相同的术语来描述其家庭生活。因此,可以更容易地将建议整合到日常生活中,从而长期观点支持系统的接受。
The energy consumption of private households amounts to approximately 30% of the total global energy consumption, causing a large share of the CO2 emissions through energy production. An intelligent demand response via load shifting increases the energy efficiency of residential buildings by nudging residents to change their energy consumption behavior. This paper introduces an activity prediction-based framework for the utility-based context-aware multi-agent recommendation system that generates an activity shifting schedule for a 24-hour time horizon to either focus on CO2 emissions or energy cost savings. In particular, we design and implement an Activity Agent that uses hourly energy consumption data. It does not require further sensorial data or activity labels which reduces implementation costs and the need for extensive user input. Moreover, the system enhances the utility option of saving energy costs by saving CO2 emissions and provides the possibility to focus on both dimensions. The empirical results show that while setting the focus on CO2 emissions savings, the system provides an average of 12% of emissions savings and 7% of cost savings. When focusing on energy cost savings, 20% of energy costs and 6% of emissions savings are possible for the studied households in case of accepting all recommendations. Recommending an activity schedule, the system uses the same terms residents describe their domestic life. Therefore, recommendations can be more easily integrated into daily life supporting the acceptance of the system in a long-term perspective.