论文标题
球体包装问题中的可计算性问题
Computability questions in the sphere packing problem
论文作者
论文摘要
我们考虑具有特殊规律性属性(分别是晶格或具有给定绑定在翻译数量或任意周期性集合的给定绑定的定期集)的最佳球形包装的一组尺寸。我们证明,所有这些集合都是可计算的,鉴于Oracle通过增加Kolmogorov的复杂性来订购一组相关的球形代码。
We consider the sets of dimensions for which there is an optimal sphere packing with special regularity properties (respectively, a lattice, or a periodic set with a given bound on the number of translations, or an arbitrary periodic set). We show that all these sets are oracle-computable, given an oracle that orders an associated set of spherical codes by increasing Kolmogorov complexity.