论文标题
评估确定锂离子电池分离器曲折度的方法
Evaluation of methods for the determination of tortuosity of Li-ion battery separators
论文作者
论文摘要
孔隙率和曲折通常用于表征锂离子电池分离器的微观结构,并被用作高级电池模型中的关键输入参数。本文中,基于其双倍的意义(即几何和物理曲折性),引入了多孔培养基的曲折度的一般分类。然后,引入和比较了三种不同的方法来确定分离器的电曲折度,其中包括经验性的bruggeman方程,即使用电化学障碍谱(EIS)测试的实验方法,使用逼真的3D微结构从Nanoscale X-Ray Comput comput comput comput comput tocraphic(xct)中获得的分离器进行了数值方法(XCT)。另外,通过引入电现象学因子(\ b {eta} _e)来建立几何折磨与分离器的电曲折之间的联系,这可以促进分离器的显微结构特性和运输特性之间关系之间的关系。此外,为了定量比较由不同方法确定的曲折度的值,比较了相应的有效运输系数(δ),通常用作多孔培养基中电解质的有效扩散率和电导率的校正。
The porosities and tortuosities are commonly utilized to characterize the microstructure of a Li-ion battery's separator and are adopted as key input parameters in advanced battery models. Herein, a general classification of the tortuosity for a porous medium is introduced based on its bi-fold significance, i.e., the geometrical and physical tortuosities. Then, three different methods for the determination of separator's electrical tortuosity are introduced and compared, which include the empirical Bruggeman equation, the experimental method using Electrochemical Impedance Spectrum (EIS) testing a the numerical method using realistic 3D microstructure of the separator obtained from nanoscale X-ray Computed Tomography (XCT). In addition, the connection between the geometrical tortuosity and the electrical tortuosity of a separator is established by introducing the electrical phenomenological factor (\b{eta}_e), which can facilitate the understanding of the relationship between the microstructure characteristics and transport properties of the separators. Furthermore, to quantitively compare the values of the tortuosities determined by different methods, the corresponding effective transport coefficients (δ) are compared, which was usually used as a correction for effective diffusivity and conductivity of electrolytes in porous media.