论文标题

EEG-NEXT:一种现代化的转向,用于分类脑电图的认知活动

EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive Activity from EEG

论文作者

Demir, Andac, Khalil, Iya, Kiziltan, Bulent

论文摘要

基于脑电图(EEG)的脑部计算机界面(BCI)系统的主要挑战之一是学习主题/会话不变特征,以在端到端的判别设置中对认知活动进行分类。我们提出了一个新颖的端到端机器学习管道EEG-NEXT,该管道促进了转移学习:通过自适应登录,取代最新的(SOTA)图像分类模型)作为骨干网络。在公开可用的数据集(Physionet Sleep Cassette和BNCI2014001)上,我们通过跨主体验证对SOTA进行基准测试,并在认知活动分类中表现出提高的准确性,以及跨同类群的更好的概括性。

One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源