论文标题
干预措施中气候变化的强大检测和归因
Robust detection and attribution of climate change under interventions
论文作者
论文摘要
指纹是气候变化检测和归因(D&A)的关键工具,用于确定观察值的变化是否与内部气候变异性(检测)以及是否可以将观察到的变化分配给特定的外部驱动程序(归因)。我们提出了一种基于监督学习的直接D&A方法,以提取指纹,从而在相关的外源变量(即除目标以外的气候驱动因素)的相关干预措施下进行强有力的预测。我们采用锚回归,这是一种受因果推理启发的分配统计学习方法,可很好地推断出所考虑的干预措施下的扰动数据。来自预测的残差具有与外源变量的不相关性或平均独立性,从而保证了稳健性。我们将D&A定义为依赖相同统计模型但使用不同目标和测试统计数据的统一假设测试框架。在实验中,我们首先表明,在太阳能强迫上的强大干预措施下,可以从温度空间模式中强牢固地预测CO2强迫。其次,我们说明了归因于温室气体和气溶胶的归因,同时分别防止对气溶胶和二氧化碳强迫进行干预。我们的研究表明,与相关干预措施相关的鲁棒性约束可能会显着受到气候变化的检测和归因。
Fingerprints are key tools in climate change detection and attribution (D&A) that are used to determine whether changes in observations are different from internal climate variability (detection), and whether observed changes can be assigned to specific external drivers (attribution). We propose a direct D&A approach based on supervised learning to extract fingerprints that lead to robust predictions under relevant interventions on exogenous variables, i.e., climate drivers other than the target. We employ anchor regression, a distributionally-robust statistical learning method inspired by causal inference that extrapolates well to perturbed data under the interventions considered. The residuals from the prediction achieve either uncorrelatedness or mean independence with the exogenous variables, thus guaranteeing robustness. We define D&A as a unified hypothesis testing framework that relies on the same statistical model but uses different targets and test statistics. In the experiments, we first show that the CO2 forcing can be robustly predicted from temperature spatial patterns under strong interventions on the solar forcing. Second, we illustrate attribution to the greenhouse gases and aerosols while protecting against interventions on the aerosols and CO2 forcing, respectively. Our study shows that incorporating robustness constraints against relevant interventions may significantly benefit detection and attribution of climate change.