论文标题

大规模点云的弱监督语义细分

Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud

论文作者

Zhang, Yachao, Li, Zonghao, Xie, Yuan, Qu, Yanyun, Li, Cuihua, Mei, Tao

论文摘要

大规模点云语义分割的现有方法需要昂贵,乏味和容易出错的手动点注释。直观地,弱监督的培训是降低标签成本的直接解决方案。但是,对于弱监督的大规模点云语义细分,很少有注释将不可避免地导致网络学习无效。我们提出了一种有效的弱监督方法,其中包含两个组件来解决上述问题。首先,我们构建了一个借口任务,\ textit {i。,}点云着色,并通过自我监督的学习将所学的先验知识从大量未标记的点云转移到弱监督的网络中。通过这种方式,从异构任务中可以提高弱监督网络的表示能力。此外,为了生成用于未标记数据的伪标签,在生成的类原型的帮助下,提出了稀疏标签的传播机制,该原型用于测量未标记点的分类置信度。我们的方法在具有不同方案的大规模点云数据集上进行评估,包括室内和室外。实验结果表明,与完全监督的方法\ footNote {基于Mindspore的代码:https://github.com/dmcv-ecnu/mindspore/mindspore/modelzoo/main/main/main/main/main/ws3 \ _mindspore}。

Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations. Intuitively, weakly supervised training is a direct solution to reduce the cost of labeling. However, for weakly supervised large-scale point cloud semantic segmentation, too few annotations will inevitably lead to ineffective learning of network. We propose an effective weakly supervised method containing two components to solve the above problem. Firstly, we construct a pretext task, \textit{i.e.,} point cloud colorization, with a self-supervised learning to transfer the learned prior knowledge from a large amount of unlabeled point cloud to a weakly supervised network. In this way, the representation capability of the weakly supervised network can be improved by the guidance from a heterogeneous task. Besides, to generate pseudo label for unlabeled data, a sparse label propagation mechanism is proposed with the help of generated class prototypes, which is used to measure the classification confidence of unlabeled point. Our method is evaluated on large-scale point cloud datasets with different scenarios including indoor and outdoor. The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods\footnote{Code based on mindspore: https://github.com/dmcv-ecnu/MindSpore\_ModelZoo/tree/main/WS3\_MindSpore}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源