论文标题

预测形状的发展:Riemannian方法

Predicting Shape Development: a Riemannian Method

论文作者

Türkseven, Doğa, Rekik, Islem, von Tycowicz, Christoph, Hanik, Martin

论文摘要

通过单个基线观察预测解剖形状的未来发展是一项艰巨的任务。但这对于临床决策至关重要。研究表明,应在弯曲的形状空间中解决,因为(例如,与疾病相关的)形状变化经常暴露于非线性特征。因此,我们提出了一种新颖的预测方法,该方法在riemannian形状空间中编码整个形状。然后,它学习了一种基于纵向训练数据的分层统计建模建立的简单预测技术。当应用于预测阿尔茨海默氏病和人体运动下右海马形状的未来发展时,它的表现优于深度学习支持的变体和最先进的变体。

Predicting the future development of an anatomical shape from a single baseline observation is a challenging task. But it can be essential for clinical decision-making. Research has shown that it should be tackled in curved shape spaces, as (e.g., disease-related) shape changes frequently expose nonlinear characteristics. We thus propose a novel prediction method that encodes the whole shape in a Riemannian shape space. It then learns a simple prediction technique founded on hierarchical statistical modeling of longitudinal training data. When applied to predict the future development of the shape of the right hippocampus under Alzheimer's disease and to human body motion, it outperforms deep learning-supported variants as well as state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源