论文标题

复杂网络的可控性:输入节点放置限制最长的控制链

Controllability of complex networks: input node placement restricting the longest control chain

论文作者

Alizadeh, Samie, Pósfai, Márton, Ghasemi, Abdorasoul

论文摘要

控制网络所需的最小输入数量通常用于量化其可控性。但是,通过最小输入来控制线性动力学,通常具有较大的能量需求,并且在最小化输入和控制能量的数量之间存在固有的权衡。为了更好地理解这一权衡,我们研究了确定最小输入节点集的问题,以确保控制控制链,同时限制最长的控制链的长度。最长的控制链是从输入节点到任何网络节点的最大距离,最近的工作发现其长度会大大降低控制能量。我们绘制最长的控制链构成最小输入问题,以找到关节最大匹配和最小主导集。我们表明该图组合问题是NP完整的,我们介绍并验证了启发式近似。将此算法应用于真实和模型网络的集合,我们研究了网络结构如何影响最小输入数量,例如,对于许多减少最长控制链的真实网络而言,仅需要少数或不需要其他输入,只需要其他输入,只需要输入节点的重排。

The minimum number of inputs needed to control a network is frequently used to quantify its controllability. Control of linear dynamics through a minimum set of inputs, however, often has prohibitively large energy requirements and there is an inherent trade-off between minimizing the number of inputs and control energy. To better understand this trade-off, we study the problem of identifying a minimum set of input nodes such that controllabililty is ensured while restricting the length of the longest control chain. The longest control chain is the maximum distance from input nodes to any network node, and recent work found that reducing its length significantly reduces control energy. We map the longest control chain-constraint minimum input problem to finding a joint maximum matching and minimum dominating set. We show that this graph combinatorial problem is NP-complete, and we introduce and validate a heuristic approximation. Applying this algorithm to a collection of real and model networks, we investigate how network structure affects the minimum number of inputs, revealing, for example, that for many real networks reducing the longest control chain requires only few or no additional inputs, only the rearrangement of the input nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源