论文标题
影子散文:当退化时,先验会遇到散布模型以清除阴影
ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow Removal
论文作者
论文摘要
最近的深度学习方法在删除图像阴影中取得了令人鼓舞的结果。但是,由于缺乏降解之前的嵌入和建模能力的不足,他们的恢复图像仍然遭受了不令人满意的边界伪像。我们的工作通过提出一个统一的扩散框架来解决这些问题,该统一扩散框架同时整合了图像和退化先验,以进行高效的阴影去除。详细介绍,我们首先提出了一个阴影退化模型,这激发了我们建立一个被称为Shandow -Diffusion的新颖展开的扩散模型。它可以通过逐步完善所需的输出,并具有降解先验和扩散生成性先验,从而提高了模型去除阴影的能力,从本质上讲,这可以作为图像恢复的新的强大基线。此外,阴影扩散逐渐将估计的阴影面膜作为扩散发生器的辅助任务,从而导致更准确,更坚固的无阴影图像生成。我们在包括ISTD,ISTD+和SRD在内的三个流行公共数据集上进行了广泛的实验,以验证我们的方法的有效性。与最先进的方法相比,我们的模型在PSNR方面取得了显着改善,从31.69db增加到SRD数据集的34.73DB。
Recent deep learning methods have achieved promising results in image shadow removal. However, their restored images still suffer from unsatisfactory boundary artifacts, due to the lack of degradation prior embedding and the deficiency in modeling capacity. Our work addresses these issues by proposing a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal. In detail, we first propose a shadow degradation model, which inspires us to build a novel unrolling diffusion model, dubbed ShandowDiffusion. It remarkably improves the model's capacity in shadow removal via progressively refining the desired output with both degradation prior and diffusive generative prior, which by nature can serve as a new strong baseline for image restoration. Furthermore, ShadowDiffusion progressively refines the estimated shadow mask as an auxiliary task of the diffusion generator, which leads to more accurate and robust shadow-free image generation. We conduct extensive experiments on three popular public datasets, including ISTD, ISTD+, and SRD, to validate our method's effectiveness. Compared to the state-of-the-art methods, our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.