论文标题

类别级别的6D对象姿势效果估计具有灵活向量的旋转表示形式

Category-Level 6D Object Pose Estimation with Flexible Vector-Based Rotation Representation

论文作者

Chen, Wei, Jia, Xi, Zhang, Zhongqun, Chang, Hyung Jin, Shen, Linlin, Duan, Jinming, Leonardis, Ales

论文摘要

在本文中,我们提出了一种基于3D图卷积的新型管道,用于从单眼RGB-D图像中进行类别级别的6D姿势和尺寸估计。所提出的方法利用有效的3D数据增强和基于媒介的新型解耦旋转表示。具体而言,我们首先设计了一种带有3D图卷积的定向感知自动编码器,用于潜在功能学习。由于3D图卷积的移位和规模不变属性,学到的潜在特征对点移位和大小不敏感。然后,为了有效地从潜在功能中解码旋转信息,我们设计了一种基于灵活的矢量的可分解旋转表示形式,该表示可以使用两个解码器来互补访问旋转信息。提出的旋转表示有两个主要优点:1)使旋转估计更容易的解耦特征; 2)向量的柔性长度和旋转角,使我们能够为特定的姿势估计任务找到更合适的矢量表示。最后,我们提出了一种3D变形机制,以提高管道的概括能力。广泛的实验表明,拟议的管道在类别级别的任务上实现了最先进的性能。此外,实验表明,所提出的旋转表示比其他旋转表示更适合姿势估计任务。

In this paper, we propose a novel 3D graph convolution based pipeline for category-level 6D pose and size estimation from monocular RGB-D images. The proposed method leverages an efficient 3D data augmentation and a novel vector-based decoupled rotation representation. Specifically, we first design an orientation-aware autoencoder with 3D graph convolution for latent feature learning. The learned latent feature is insensitive to point shift and size thanks to the shift and scale-invariance properties of the 3D graph convolution. Then, to efficiently decode the rotation information from the latent feature, we design a novel flexible vector-based decomposable rotation representation that employs two decoders to complementarily access the rotation information. The proposed rotation representation has two major advantages: 1) decoupled characteristic that makes the rotation estimation easier; 2) flexible length and rotated angle of the vectors allow us to find a more suitable vector representation for specific pose estimation task. Finally, we propose a 3D deformation mechanism to increase the generalization ability of the pipeline. Extensive experiments show that the proposed pipeline achieves state-of-the-art performance on category-level tasks. Further, the experiments demonstrate that the proposed rotation representation is more suitable for the pose estimation tasks than other rotation representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源