论文标题
用于实时锂离子电池健康估计的数字双胞胎,并通过部分放电数据
Digital Twin for Real-time Li-ion Battery State of Health Estimation with Partially Discharged Cycling Data
论文作者
论文摘要
为了满足实践中相当高的安全性和可靠性要求,锂离子电池(LIBS)的健康状况(SOH)估计与降解性能有着密切的关系,已通过各种电子产品的广泛应用进行了广泛的研究。传统的SOH估计方法使用数字双胞胎是周期终止估计,需要完成充电/放电周期才能观察最大可用容量。但是,在具有部分放电的数据的动态操作条件下,无法了解LIB的准确实时SOH估计。为了弥合这一研究差距,我们提出了一个数字双框架,以获得感知电池飞行的SOH的能力,从而更新了物理电池模型。提出的数字双溶液由三个核心组件组成,可实现实时估算,而无需完全放电。首先,为了处理可变训练循环数据,提出了能量差异循环同步,以使循环数据与保证相同的数据结构保持一致。其次,为了探索不同训练抽样时间的时间重要性,使用数据编码开发了一个时间注意事项SOH估计模型,以捕获周期上的降解行为,不包括对样本的不利影响。最后,为在线实施,已经提出了基于相似性分析的数据重建,以提供实时的SOH估计,而无需完整的放电周期。通过以广泛使用的基准进行的一系列结果,该方法在正在进行的周期中大多数采样时间的误差得出的实时SOH估计值。
To meet the fairly high safety and reliability requirements in practice, the state of health (SOH) estimation of Lithium-ion batteries (LIBs), which has a close relationship with the degradation performance, has been extensively studied with the widespread applications of various electronics. The conventional SOH estimation approaches with digital twin are end-of-cycle estimation that require the completion of a full charge/discharge cycle to observe the maximum available capacity. However, under dynamic operating conditions with partially discharged data, it is impossible to sense accurate real-time SOH estimation for LIBs. To bridge this research gap, we put forward a digital twin framework to gain the capability of sensing the battery's SOH on the fly, updating the physical battery model. The proposed digital twin solution consists of three core components to enable real-time SOH estimation without requiring a complete discharge. First, to handle the variable training cycling data, the energy discrepancy-aware cycling synchronization is proposed to align cycling data with guaranteeing the same data structure. Second, to explore the temporal importance of different training sampling times, a time-attention SOH estimation model is developed with data encoding to capture the degradation behavior over cycles, excluding adverse influences of unimportant samples. Finally, for online implementation, a similarity analysis-based data reconstruction has been put forward to provide real-time SOH estimation without requiring a full discharge cycle. Through a series of results conducted on a widely used benchmark, the proposed method yields the real-time SOH estimation with errors less than 1% for most sampling times in ongoing cycles.