论文标题
部分可观测时空混沌系统的无模型预测
Stellar Reddening Based Extinction Maps for Cosmological Applications
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Cosmological surveys must correct their observations for the reddening of extragalactic objects by Galactic dust. Existing dust maps, however, have been found to have spatial correlations with the large-scale structure of the Universe. Errors in extinction maps can propagate systematic biases into samples of dereddened extragalactic objects and into cosmological measurements such as correlation functions between foreground lenses and background objects and the primordial non-gaussianity parameter $f_{NL}$. Emission-based maps are contaminated by the cosmic infrared background, while maps inferred from stellar-reddenings suffer from imperfect removal of quasars and galaxies from stellar catalogs. Thus, stellar-reddening based maps using catalogs without extragalactic objects offer a promising path to making dust maps with minimal correlations with large-scale structure. We present two high-latitude integrated extinction maps based on stellar reddenings, with a point spread function of full-width half-maximum 6.1' and 15'. We employ a strict selection of catalog objects to filter out galaxies and quasars and measure the spatial correlation of our extinction maps with extragalactic structure. Our galactic extinction maps have reduced spatial correlation with large scale structure relative to most existing stellar-reddening based and emission-based extinction maps.