论文标题
部分可观测时空混沌系统的无模型预测
Spatio-Temporal Super-Resolution of Dynamical Systems using Physics-Informed Deep-Learning
论文作者
论文摘要
这项工作提出了一个基于物理学的深度学习超分辨率框架,以增强时间相关的偏微分方程(PDE)解决方案的时空分辨率。基于深度学习的超分辨率模型的先前作品通过减少传统数值方案的计算费用来表现出在加速工程设计方面的希望。但是,这些模型在很大程度上依赖于训练过程中所需数据标记的数据的可用性。在这项工作中,我们提出了一个基于物理学的深度学习框架,以增强粗尺度(在时空和时间上)PDE解决方案的空间和时间分辨率,而无需任何HR数据。该框架由两个可训练的模块组成,独立于超级分辨PDE解决方案,首先是在空间上,然后沿时间方向。基于物理的损失是以一种新颖的方式实施的,以确保在不同时间的时空精制输出之间紧密耦合并提高框架准确性。我们通过研究其在弹性动力学问题上的性能来分析开发框架的能力。据观察,所提出的框架可以成功地(在时空和时间上)超级溶解(无论是在时空和时间上)低分辨率PDE解决方案,同时满足基于物理的约束并产生高准确性。此外,分析和获得的加速表明,所提出的框架非常适合与传统的数值方法集成,以降低工程设计期间的计算复杂性。
This work presents a physics-informed deep learning-based super-resolution framework to enhance the spatio-temporal resolution of the solution of time-dependent partial differential equations (PDE). Prior works on deep learning-based super-resolution models have shown promise in accelerating engineering design by reducing the computational expense of traditional numerical schemes. However, these models heavily rely on the availability of high-resolution (HR) labeled data needed during training. In this work, we propose a physics-informed deep learning-based framework to enhance the spatial and temporal resolution of coarse-scale (both in space and time) PDE solutions without requiring any HR data. The framework consists of two trainable modules independently super-resolving the PDE solution, first in spatial and then in temporal direction. The physics based losses are implemented in a novel way to ensure tight coupling between the spatio-temporally refined outputs at different times and improve framework accuracy. We analyze the capability of the developed framework by investigating its performance on an elastodynamics problem. It is observed that the proposed framework can successfully super-resolve (both in space and time) the low-resolution PDE solutions while satisfying physics-based constraints and yielding high accuracy. Furthermore, the analysis and obtained speed-up show that the proposed framework is well-suited for integration with traditional numerical methods to reduce computational complexity during engineering design.