论文标题

C-VTON:基于上下文驱动的图像虚拟试验网络

C-VTON: Context-Driven Image-Based Virtual Try-On Network

论文作者

Fele, Benjamin, Lampe, Ajda, Peer, Peter, Štruc, Vitomir

论文摘要

基于图像的虚拟试验技术表现出了增强用户体验并提高客户面向时尚电子商务平台的客户满意度的巨大希望。但是,目前,现有技术仍然受到限制,它们能够从各种特征的输入图像中产生的尝试结果的质量限制。在这项工作中,我们提出了一个由上下文驱动的虚拟试验网络(C-VTON),该网络(C-VTON)解决这些局限性,并令人信服地将选定的服装项目转移到目标受试者中,即使在具有挑战性的姿势配置和自我估计的情况下也是如此。 C-VTON管道的核心是:(i)几何匹配过程,该过程有效地将目标服装与输入图像中的人的姿势保持一致,以及(ii)在合成最终尝试结果时使用各种类型的上下文信息的强大图像发生器。 C-Vton在Viton和MPV数据集的严格实验中进行了评估,并与文献最新技术相比。实验结果表明,所提出的方法能够产生照片现实和视觉上令人信服的结果,并显着改善现有的最新作品。

Image-based virtual try-on techniques have shown great promise for enhancing the user-experience and improving customer satisfaction on fashion-oriented e-commerce platforms. However, existing techniques are currently still limited in the quality of the try-on results they are able to produce from input images of diverse characteristics. In this work, we propose a Context-Driven Virtual Try-On Network (C-VTON) that addresses these limitations and convincingly transfers selected clothing items to the target subjects even under challenging pose configurations and in the presence of self-occlusions. At the core of the C-VTON pipeline are: (i) a geometric matching procedure that efficiently aligns the target clothing with the pose of the person in the input images, and (ii) a powerful image generator that utilizes various types of contextual information when synthesizing the final try-on result. C-VTON is evaluated in rigorous experiments on the VITON and MPV datasets and in comparison to state-of-the-art techniques from the literature. Experimental results show that the proposed approach is able to produce photo-realistic and visually convincing results and significantly improves on the existing state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源