论文标题
来自神经网络量子状态的稀释中子星物质
Dilute neutron star matter from neural-network quantum states
论文作者
论文摘要
低密度中子物质的特征是令人着迷的新兴量子现象,例如库珀对的形成和超流体的发作。我们通过利用隐藏的核子神经网络量子状态与变异蒙特卡洛和随机重新配置技术相结合的表达性来对这种密度制度进行建模。我们的方法与辅助场扩散蒙特卡洛法的竞争力是计算成本的一部分。使用前阶段无效的野外理论哈密顿量,我们计算每个无限中子物质的能量,并将其与从高度逼真的相互作用中获得的能量进行比较。此外,旋转单元和三体分布功能之间的比较表明$^1S_0 $通道中的出现配对。
Low-density neutron matter is characterized by fascinating emergent quantum phenomena, such as the formation of Cooper pairs and the onset of superfluidity. We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and stochastic reconfiguration techniques. Our approach is competitive with the auxiliary-field diffusion Monte Carlo method at a fraction of the computational cost. Using a leading-order pionless effective field theory Hamiltonian, we compute the energy per particle of infinite neutron matter and compare it with those obtained from highly realistic interactions. In addition, a comparison between the spin-singlet and triplet two-body distribution functions indicates the emergence pairing in the $^1S_0$ channel.