论文标题

牛群:从人类示范中学习的连续人类到机器人的演变

HERD: Continuous Human-to-Robot Evolution for Learning from Human Demonstration

论文作者

Liu, Xingyu, Pathak, Deepak, Kitani, Kris M.

论文摘要

从人类演示中学习的能力使机器人具有自动化各种任务的能力。但是,直接从人类示范中学习是具有挑战性的,因为人手的结构可能与所需的机器人抓手大不相同。在这项工作中,我们表明,通过使用微观进化增强学习可以将操纵技巧从人转移到机器人,其中五个手指的人类灵巧的手动机器人逐渐将其转化为商业机器人,而在物理模拟器中重复进行互动,以不断地从人类示范中学习的政策。为了处理机器人参数的高维度,我们提出了一种用于多维演化路径搜索的算法,该算法允许对机器人进化路径和策略进行关节优化。通过对人类物体操纵数据集的实验,我们表明我们的框架可以有效地转移从各种方式的人类示范中训练的专家人类代理政策,以针对商业机器人。

The ability to learn from human demonstration endows robots with the ability to automate various tasks. However, directly learning from human demonstration is challenging since the structure of the human hand can be very different from the desired robot gripper. In this work, we show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning, where a five-finger human dexterous hand robot gradually evolves into a commercial robot, while repeated interacting in a physics simulator to continuously update the policy that is first learned from human demonstration. To deal with the high dimensions of robot parameters, we propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy. Through experiments on human object manipulation datasets, we show that our framework can efficiently transfer the expert human agent policy trained from human demonstrations in diverse modalities to target commercial robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源