论文标题

分子量子特性的加密机器学习

Encrypted machine learning of molecular quantum properties

论文作者

Weinreich, Jan, von Rudorff, Guido Falk, von Lilienfeld, O. Anatole

论文摘要

具有改进预测的大型机器学习模型已在化学科学中广泛使用。不幸的是,这些模型并不能保护商业环境中必要的隐私,而禁止使用其他人使用潜在的非常有价值的数据。加密预测过程可以通过双盲模型评估解决此问题,并禁止提取培训或查询数据。但是,基于完全同型加密或联合学习的现代ML模型要么太昂贵,要么对于实际使用,要么必须以更高的速度以较弱的安全性来交易。我们已经使用遗漏的转移实现了安全和计算上可行的加密机器学习模型,从而实现了对化合物跨化合物空间的分子量子性能的遗漏和安全的预测。但是,我们发现使用内核脊回归模型的加密预测比没有加密贵的一百万倍。这表明对紧凑的机器学习模型结构(包括分子表示和内核矩阵大小)的迫切需求最小化了模型评估成本。

Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting the use of potentially extremely valuable data by others. Encrypting the prediction process can solve this problem by double-blind model evaluation and prohibits the extraction of training or query data. However, contemporary ML models based on fully homomorphic encryption or federated learning are either too expensive for practical use or have to trade higher speed for weaker security. We have implemented secure and computationally feasible encrypted machine learning models using oblivious transfer enabling and secure predictions of molecular quantum properties across chemical compound space. However, we find that encrypted predictions using kernel ridge regression models are a million times more expensive than without encryption. This demonstrates a dire need for a compact machine learning model architecture, including molecular representation and kernel matrix size, that minimizes model evaluation costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源