论文标题
通过活动正规化生物启发的,无任务的持续学习
Bio-Inspired, Task-Free Continual Learning through Activity Regularization
论文作者
论文摘要
在不忘记的情况下依次学习多个任务的能力是生物学大脑的关键技能,而它代表了深度学习领域的主要挑战。为了避免灾难性的遗忘,已经设计了各种持续学习(CL)的方法。但是,这些通常需要离散的任务边界。这一要求在生物学上似乎令人难以置信,并且经常限制CL方法在现实世界中的应用,在现实世界中,任务并不总是定义得很好。在这里,我们从神经科学中汲取灵感,那里已经提出了稀疏,非重叠的神经元表示,以防止灾难性的遗忘。与大脑一样,我们认为应根据饲料向前(刺激特异性)以及自上而下(上下文特定的)信息选择这些稀疏表示。为了实现这种选择性的稀疏性,我们使用一种可爱形式的层次信用分配形式,称为“深度反馈控制”(DFC),并将其与胜利者 - 全部稀疏机制相结合。除了稀疏性外,我们还引入了每一层内的横向复发连接,以进一步保护先前学习的表示。我们在分裂计算机视觉基准上评估了DFC的新稀疏版本,并表明只有稀疏性和层内复发连接的组合可以改善相对于标准反向传播的CL性能。我们的方法达到了与众所周知的CL方法相似的性能,例如弹性重量巩固和突触智能,而无需有关任务边界的信息。总体而言,我们展示了采用从大脑的计算原理来得出CL的新的,无任务的学习算法的想法。
The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.