论文标题

定量Steinitz定理:多项式结合

Quantitative Steinitz Theorem: A polynomial bound

论文作者

Ivanov, Grigory, Naszódi, Márton

论文摘要

经典的Steinitz Theorem指出,如果原点属于集合$ s \ subset \ mathbb {r}^d $的凸壳的内部,则最多有$ s $的$ 2D $点的凸壳包含室内的原点。 Bárány,Katchalski和Pach证明了Steinitz定理的以下定量版本。令$ q $为$ \ mathbb {r}^d $中的凸polytope,其中包含标准的欧几里得单元球$ \ mathbf {b}^d $。然后,有$ q $的最多$ 2D $顶点,其凸壳$ q^\ prime $满足\ [r \ mathbf {b}^d \ subset q^\ prime \ prime \],并带有$ r \ geq d^{ - 2d} $。他们猜想$ r \ geq c d^{ - 1/2} $具有通用常数$ c> 0 $。我们证明$ r \ geq \ frac {1} {5d^2} $,是$ r $的第一个多项式下限。此外,我们表明$ r $不大于$ \ frac {2} {\ sqrt {d}} $。

The classical Steinitz theorem states that if the origin belongs to the interior of the convex hull of a set $S \subset \mathbb{R}^d$, then there are at most $2d$ points of $S$ whose convex hull contains the origin in the interior. Bárány, Katchalski, and Pach proved the following quantitative version of Steinitz's theorem. Let $Q$ be a convex polytope in $\mathbb{R}^d$ containing the standard Euclidean unit ball $\mathbf{B}^d$. Then there exist at most $2d$ vertices of $Q$ whose convex hull $Q^\prime$ satisfies \[ r \mathbf{B}^d \subset Q^\prime \] with $r\geq d^{-2d}$. They conjectured that $r\geq c d^{-1/2}$ holds with a universal constant $c>0$. We prove $r \geq \frac{1}{5d^2}$, the first polynomial lower bound on $r$. Furthermore, we show that $r$ is not be greater than $\frac{2}{\sqrt{d}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源