论文标题

驱动CFT中动态相变的brane探测器

Brane Detectors of a Dynamical Phase Transition in a Driven CFT

论文作者

Das, Suchetan, Ezhuthachan, Bobby, Kundu, Arnab, Porey, Somnath, Roy, Baishali, Sengupta, K.

论文摘要

我们表明,从非加热到周期性$ sl(2,\ mathbb {r})$驱动的二维形成式磁场理论(CFT)的动态过渡被视为由嵌入在dual Ads中的散装brane的第一阶过渡。我们构建了对应于加热和非加热阶段的驱动CFT的双散装度量。这些指标是不同的广告$ _ {2} $ slices的纯广告$ _ {3} $ metric。我们在获得的双ADS空间中嵌入了棕褐色,并在探针极限和世界末日(EOW)Brane中对其自由能进行了明确的计算。我们的分析表明,随着一个人从非加热阶段移动到加热阶段(通过调整驱动CFT的驱动幅度和/或频率),因此在Brane自由能的第一个衍生物中存在有限的不连续性),从而证明了大体一阶过渡的存在。有趣的是,在没有勃雷恩的情况下,散装没有任何这种过渡。我们还使用批量图片提供了两点,四点超时相关器(OTOC)的明确计算。我们的分析表明,这些相关器在不同阶段的结构与在驱动的CFT中计算的对应物相匹配。我们分析了多个EOW麸皮在散装中的效果,并讨论了我们工作的可能扩展,以使其对更丰富的几何形状和麸皮。

We show that a dynamical transition from a non-heating to a heating phase of a periodic $SL(2,\mathbb{R})$ driven two-dimensional conformal field theory (CFT) with a large central charge is perceived as a first order transition by a bulk brane embedded in the dual AdS. We construct the dual bulk metric corresponding to a driven CFT for both the heating and the non-heating phases. These metrics are different AdS$_{2}$ slices of the pure AdS$_{3}$ metric. We embed a brane in the obtained dual AdS space and provide an explicit computation of its free energy both in the probe limit and for an end-of-world (EOW) brane taking into account its backreaction. Our analysis indicates a finite discontinuity in the first derivative of the brane free energy as one moves from the non-heating to the heating phase (by tuning the drive amplitude and/or frequency of the driven CFT) thus demonstrating the presence of the bulk first order transition. Interestingly, no such transition is perceived by the bulk in the absence of the brane. We also provide explicit computations of two-point, four-point out-of-time correlators (OTOC) using the bulk picture. Our analysis shows that the structure of these correlators in different phases match their counterparts computed in the driven CFT. We analyze the effect of multiple EOW branes in the bulk and discuss possible extensions of our work for richer geometries and branes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源