论文标题

F(t)宇宙学针对宇宙学方法:使用模拟和观察数据的新研究

f(T) cosmology against the cosmographic method: A new study using mock and observational data

论文作者

Sabiee, M., Malekjani, M., Jassur, D. Mohammad Zadeh

论文摘要

在本文中,我们使用IA型超新星(SNIA),类星体(QSOS),伽马射线爆发(GRB)的hubble图和BARYONIC声学振荡(BAO)的测量结果研究了PowerLaw $ f(t)$模型。使用SNIA的模拟数据,基于PowerLaw $ F(T)$模型生成的QSO和GRB,我们展示了不同的掌握方法是否适合重建距离模量。特别是,除了第四阶和第五阶Taylor系列外,我们还研究了理性的板多项式$(3,2)$(3,2)$(3,2)$(2,2)$。我们表明,pade $(3,2)$是可以在COSMography方法中使用的最佳近似值,可在低红移和高红移处重建距离模量。在Pade $(3,2)$ cosmographic方法的背景下,我们表明PowerLaw $ f(t)$模型与SNIA,QSOS和GRB的Hubble图中的真实观察数据非常一致。此外,我们发现,SNIA的哈勃图和BAO观察的组合会导致与模型无关的宇宙学方法与PowerLaw $ f(t)$模型之间的更好一致性。最后,我们对幂律$ f(t)$模型描述的有效状态方程参数的观察性约束,显示了类似幻影的行为,尤其是当我们的分析中包括BAO观察结果时。

In this paper, we study the power-law $f(T)$ model using Hubble diagrams of type Ia supernovae (SNIa), quasars (QSOs), Gamma Ray Bursts (GRBs) and the measurements from baryonic acoustic oscillations (BAO) in the framework of the cosmographic method. Using mock data for SNIa, QSOs and GRBs generated based on the power-law $f(T)$ model, we show whether different cosmographic methods are suitable to reconstruct the distance modulus or not. In particular, we investigate the rational PADE polynomials $(3,2)$ and $(2,2)$ in addition to the fourth- and fifth- order Taylor series. We show that PADE $(3,2)$ is the best approximation that can be used in the cosmographic method to reconstruct the distance modulus at both low and high redshifts. In the context of PADE $(3,2)$ cosmographic method, we show that the power-law $f(T)$ model is well consistent with the real observational data from the Hubble diagrams of SNIa, QSOs and GRBs. Moreover, we find that the combination of the Hubble diagram of SNIa and the BAO observation leads to better consistency between the model-independent cosmographic method and the power-law $f(T)$ model. Finally, our observational constraints on the parameter of the effective equation of state of DE, described by the power-law $f(T)$ model, show the phantom-like behavior, especially when the BAO observations are included in our analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源