论文标题

在列编号和禁止的一键式$δ$ - 模块化矩阵上

On the column number and forbidden submatrices for $Δ$-modular matrices

论文作者

Paat, Joseph, Stallknecht, Ingo, Walsh, Zach, Xu, Luze

论文摘要

如果每个$ \ text {rank}(\ m athbf {a})\ times \ times \ text {rankBf}(\ mathbf {a})$ qubspatrix of $ \ mathbf {a a a a a a a a a a a a a a a a} $ qualtue at $ mathbf {ar})\ times \ text {rankBf}(\ mathbf {a})$ subm of $ \ m m mathbf {a a a a a a a an} $ at $ $δ$ - 模块化矩阵的研究出现在整数编程理论中,其中开放的猜想是,如果$δ$被认为是恒定的,则可以在多项式时间内以多项式时间来解决由$Δ$ - 模块化约束矩阵定义的整数程序。猜想只有在\ {1,2 \} $中的$δ\时才能保持真实。鉴于这种猜想,一个自然的问题是了解$Δ$模块化矩阵的结构特性。我们考虑列编号问题 - 几个非零,成对的非并行列可以排名-R $ $ $ $Δ$ - 模块化矩阵有? We prove that for each positive integer $Δ$ and sufficiently large integer $r$, every rank-$r$ $Δ$-modular matrix has at most $\binom{r+1}{2} + 80Δ^7 \cdot r$ nonzero, pairwise non-parallel columns, which is tight up to the term $80Δ^7$.这是$ \ binom {r + 1} {2} + f(δ)\ cdot r $带有多项式函数的第一个上限。我们的结果是在$δ$模块矩阵中不存在的矩阵的一部分列表。我们认为,该部分列表在未来对$δ$模块化矩阵的研究中可能具有独立的兴趣。

An integer matrix $\mathbf{A}$ is $Δ$-modular if the determinant of each $\text{rank}(\mathbf{A}) \times \text{rank}(\mathbf{A})$ submatrix of $\mathbf{A}$ has absolute value at most $Δ$. The study of $Δ$-modular matrices appears in the theory of integer programming, where an open conjecture is whether integer programs defined by $Δ$-modular constraint matrices can be solved in polynomial time if $Δ$ is considered constant. The conjecture is only known to hold true when $Δ\in \{1,2\}$. In light of this conjecture, a natural question is to understand structural properties of $Δ$-modular matrices. We consider the column number question -- how many nonzero, pairwise non-parallel columns can a rank-$r$ $Δ$-modular matrix have? We prove that for each positive integer $Δ$ and sufficiently large integer $r$, every rank-$r$ $Δ$-modular matrix has at most $\binom{r+1}{2} + 80Δ^7 \cdot r$ nonzero, pairwise non-parallel columns, which is tight up to the term $80Δ^7$. This is the first upper bound of the form $\binom{r+1}{2} + f(Δ)\cdot r$ with $f$ a polynomial function. Underlying our results is a partial list of matrices that cannot exist in a $Δ$-modular matrix. We believe this partial list may be of independent interest in future studies of $Δ$-modular matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源