论文标题
用空间重力波检测器测试重力理论
Testing alternative theories of gravity with space-based gravitational wave detectors
论文作者
论文摘要
我们使用来自二进制黑洞(BBH)和中子星的重力波(GWS),灵感来自中间质量的黑洞,以评估如何准确地确定未来空间基于空间的GW探测器,例如Lisa,Taiji和Tianqin及其组合的网络可以确定Gravity的替代基本的替代理论。我们发现,与单个检测器相比,检测器网络可以极大地改善源参数的估计误差,尤其是天空定位,但是对Graviton质量$ M_G $的约束和Brans-Dicke耦合常数$ω__{BD} $的改善很小。我们还考虑了重力替代理论中存在的可能标量模式,并且我们发现标量模式的包含对源参数的约束几乎没有影响,$ m_g $,$ω__{bd} $和参数化振幅$ a_b $ a_b $ a_b $ a_b $ a_b $ scalar模式的模式很小。对于重力质量的限制,我们考虑了GW相中的效果和由于重力质量而引起的转移功能。借助Lisa,Taiji和Tianqin的网络,我们在Graviton Compton波长$λ_G\ gtrsim 1.24 \ times 10^{20} $ m上获得了bbhs $(10^6+10^7)M_ $(1+2)\ times 10^5m_ \ odot $; $ω__{bd}> 6.11 \ times10^{6} $用于中子星 - 黑孔二进制,带质量$(1.4+400)m _ {\ odot} $。
We use gravitational waves (GWs) from binary black holes (BBHs) and neutron stars inspiraling into intermediate-mass black holes to evaluate how accurately the future space-based GW detectors such as LISA, Taiji and TianQin and their combined networks can determine source parameters and constrain alternative theories of gravity. We find that, compared with single detector, the detector network can greatly improve the estimation errors of source parameters, especially the sky localization, but the improvement of the constraint on the graviton mass $m_g$ and the Brans-Dicke coupling constant $ω_{BD}$ is small. We also consider possible scalar modes existed in alternative theories of gravity and we find the inclusion of the scalar mode has little effect on the constraints on source parameters, $m_g$, and $ω_{BD}$ and the parametrized amplitude $A_B$ of scalar modes are small. For the constraint on the graviton mass, we consider both the effects in the GW phase and the transfer function due to the mass of graviton. With the network of LISA, Taiji and TianQin, we get the lower bound on the graviton Compton wavelength $λ_g\gtrsim 1.24 \times 10^{20}$ m for BBHs with masses $(10^6+10^7)M_\odot$, and $A_B< 5.7\times 10^{-4}$ for BBHs with masses $(1+2)\times 10^5M_\odot$; $ω_{BD}>6.11\times10^{6}$ for neutron star-black hole binary with masses $(1.4+400)M_{\odot}$.