论文标题
从订单3的Vassiliev不变的打结空间中的组合单循环
A combinatorial one-cocycle in a moduli space of knots from the Vassiliev invariant of order 3
论文作者
论文摘要
高斯图和高斯图公式的理论提供了计算结不变的方便方法,例如Homflypt多项式的系数。在\ cite {4,5}中,作者使用高斯图公式在固体圆环中的结式空间中找到组合1 cocycles。在规范环上进行评估,然后可以获得新的非琐碎结。在这些书中,作者猜测,基于Vassiliev variant $ v_3 $的新公式也提供了1个cocycle。我们证明,使用作者在这些书中开发的相同方法实际上是正确的。
The theory of Gauss diagrams and Gauss diagram formulas provides convenient ways to compute knot invariants, such as coefficients of the HOMFLYPT polynomial. In \cite{4,5}, the author uses Gauss diagram formulas to find combinatorial 1-cocycles in the moduli space of knots in the solid torus. Evaluated on canonical loops, one can then obtain new, non trivial knot invariants. In those books, the author conjectures that a new formula, based on the Vassiliev invariant $v_3$ also gives a 1-cocycle. We prove that it is in fact true by using the same methods developed by the author in those books.