论文标题

表达体系结构可增强基于动力学的神经种群模型的可解释性

Expressive architectures enhance interpretability of dynamics-based neural population models

论文作者

Sedler, Andrew R., Versteeg, Christopher, Pandarinath, Chethan

论文摘要

可以从记录的神经活动中恢复潜在动态的人工神经网络可能为识别和解释生物学计算的动力学基序提供了强大的途径。鉴于单独的神经方差并不能独特地确定潜在的动力学系统,因此可解释的体系结构应优先确定准确和低维的潜在动力学。在这项工作中,我们评估了从模拟神经数据集中恢复潜在的混沌吸引子时,顺序自动编码器(SAE)的性能。我们发现,具有广泛使用的复发性神经网络(RNN)动力学的SAE无法在真正的潜在状态维度上推断出准确的发射速率,并且较大的RNN依赖于数据中不存在的动力学特征。另一方面,基于神经差微分方程(节点)的动力学的SAE推断出真正的潜在状态维度的准确速率,同时还恢复了潜在轨迹和固定点结构。消融表明,这主要是因为节点(1)允许使用较高容量的多层感知器(MLP)来对矢量场进行建模,并且(2)预测衍生物而不是下一个状态。将动力学模型的能力从其潜在维度脱钩,使节点能够学习RNN单元格失败的必要低D动力学。此外,该节点预测衍生物在潜在状态上提出了有用的自回旋先验。广泛使用RNN的动力学的次优解释性可能会激发替代节点等替代体系结构,从而可以学习低维的潜在空间中的准确动力学。

Artificial neural networks that can recover latent dynamics from recorded neural activity may provide a powerful avenue for identifying and interpreting the dynamical motifs underlying biological computation. Given that neural variance alone does not uniquely determine a latent dynamical system, interpretable architectures should prioritize accurate and low-dimensional latent dynamics. In this work, we evaluated the performance of sequential autoencoders (SAEs) in recovering latent chaotic attractors from simulated neural datasets. We found that SAEs with widely-used recurrent neural network (RNN)-based dynamics were unable to infer accurate firing rates at the true latent state dimensionality, and that larger RNNs relied upon dynamical features not present in the data. On the other hand, SAEs with neural ordinary differential equation (NODE)-based dynamics inferred accurate rates at the true latent state dimensionality, while also recovering latent trajectories and fixed point structure. Ablations reveal that this is mainly because NODEs (1) allow use of higher-capacity multi-layer perceptrons (MLPs) to model the vector field and (2) predict the derivative rather than the next state. Decoupling the capacity of the dynamics model from its latent dimensionality enables NODEs to learn the requisite low-D dynamics where RNN cells fail. Additionally, the fact that the NODE predicts derivatives imposes a useful autoregressive prior on the latent states. The suboptimal interpretability of widely-used RNN-based dynamics may motivate substitution for alternative architectures, such as NODE, that enable learning of accurate dynamics in low-dimensional latent spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源