论文标题
模拟研究,用于比较具有随机负载需求的线分布网络的功率流模型
Simulation study for the comparison of power flow models for a line distribution network with stochastic load demands
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We use simulation to compare different power flow models in the process of charging electric vehicles (EVs) by considering their random arrivals, their stochastic demand for energy at charging stations, and the characteristics of the electricity distribution network. We assume the distribution network is a line with charging stations located on it. We consider the Distflow and the Linearized Distflow power flow models and we assume that EVs arrive at the network with an exponential rate, have an exponential charging requirement, and that voltage drops on the distribution network stay under control. We provide extensive numerical results investigating the effect of using different power flow models on the performance of the network.