论文标题

Metastackvis:元模型的视觉辅助性能评估

MetaStackVis: Visually-Assisted Performance Evaluation of Metamodels

论文作者

Ploshchik, Ilya, Chatzimparmpas, Angelos, Kerren, Andreas

论文摘要

堆叠(或堆叠的概括)是一种合奏学习方法,其余的一个主要独特性:即使对原始数据集进行了几种基本模型,但它们的预测被进一步用作一个或多个元模型的输入数据,至少在一个额外的层中排列。组成一堆模型可以产生高性能的结果,但通常涉及反复试验的过程。因此,我们先前开发的视觉分析系统Stackgenvis主要旨在通过衡量其预测性能来帮助用户选择一套表现最好和多样化的模型。但是,它仅采用单个逻辑回归元模型。在本文中,我们研究了替代元模型对使用新型可视化工具(称为metastackvis)堆叠合奏性能的影响。我们的交互式工具可帮助用户根据其预测概率和多个验证指标,在视觉上探索不同的单数和成对的元模型,以及他们预测特定有问题的数据实例的能力。 Metastackvis通过基于医疗数据集和专家访谈的用法方案进行了评估。

Stacking (or stacked generalization) is an ensemble learning method with one main distinctiveness from the rest: even though several base models are trained on the original data set, their predictions are further used as input data for one or more metamodels arranged in at least one extra layer. Composing a stack of models can produce high-performance outcomes, but it usually involves a trial-and-error process. Therefore, our previously developed visual analytics system, StackGenVis, was mainly designed to assist users in choosing a set of top-performing and diverse models by measuring their predictive performance. However, it only employs a single logistic regression metamodel. In this paper, we investigate the impact of alternative metamodels on the performance of stacking ensembles using a novel visualization tool, called MetaStackVis. Our interactive tool helps users to visually explore different singular and pairs of metamodels according to their predictive probabilities and multiple validation metrics, as well as their ability to predict specific problematic data instances. MetaStackVis was evaluated with a usage scenario based on a medical data set and via expert interviews.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源