论文标题

贝塞尔电势空间中具有正平滑度指数的乘数:双边连续嵌入及其确切特征

Multipliers in the Bessel potential spaces with positive smoothness indices: bilateral continuous embeddings and their exact character

论文作者

Belyaev, Alexei A.

论文摘要

我们研究了将均匀局部的贝塞尔电势空间建立双边连续嵌入的问题,$ h^γ_{r,\:unif}(\ mathbb {r}^n)$中的乘数平稳性指数的贝塞尔电位空间之间的乘数。在模型情况下,当两个内部产品生成了两个贝塞尔电位空间的自然规范,但在相应的乘数空间上以$ h^γ_{r,\:unif}(\ mathbb {r}^n)$无法建立的描述定理定理的描述定理。还检查了这些嵌入中索引的最佳特征。

We investigate the problem of establishing bilateral continuous embeddings of the uniformly localized Bessel potential spaces $H^γ_{r, \: unif}(\mathbb{R}^n)$ into the multiplier spaces between Bessel potential spaces with positive smoothness indices. This problem is considered in the model situation when the natural norms of both of these Bessel potential spaces are generated by some inner product yet the description theorems for the corresponding multiplier space in terms of the spaces $H^γ_{r, \: unif}(\mathbb{R}^n)$ can not be established. The optimal character of the indices figuring in these embeddings is also examined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源