论文标题
通过潜在空间映射的域翻译
Domain Translation via Latent Space Mapping
论文作者
论文摘要
在本文中,我们研究了多域翻译的问题:给定一个元素$ a $ a $ a $ a $,我们想在另一个域$ b $中生成相应的$ b $样本,反之亦然。在多个域中获得监督可能是一项繁琐的任务,当有一对$(a,b)\ sim a \ times b $提供监督时,我们也建议在一个域中学习此翻译,并在只有$ a \ sim a $ a $或只有$ b \ sim b $的情况下利用可能的不成对数据。我们引入了一个名为潜在空间映射(\模型)的新的统一框架,该框架利用了多种假设,以从每个域中学习潜在空间。与现有方法不同,我们建议通过学习对域之间的每个依赖关系,进一步使用可用域的潜在空间。我们在执行三个任务中评估我们的方法i)具有图像翻译的合成数据集,ii)医学图像的语义分割的现实世界任务; iii)面部标记检测的现实世界任务。
In this paper, we investigate the problem of multi-domain translation: given an element $a$ of domain $A$, we would like to generate a corresponding $b$ sample in another domain $B$, and vice versa. Acquiring supervision in multiple domains can be a tedious task, also we propose to learn this translation from one domain to another when supervision is available as a pair $(a,b)\sim A\times B$ and leveraging possible unpaired data when only $a\sim A$ or only $b\sim B$ is available. We introduce a new unified framework called Latent Space Mapping (\model) that exploits the manifold assumption in order to learn, from each domain, a latent space. Unlike existing approaches, we propose to further regularize each latent space using available domains by learning each dependency between pairs of domains. We evaluate our approach in three tasks performing i) synthetic dataset with image translation, ii) real-world task of semantic segmentation for medical images, and iii) real-world task of facial landmark detection.